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We consider the Abelian generalization of QED? to include SU(M) flavour and 
“diagonal” SU(N) colour. The operator solutions and confinement aspects of these 
models are discussed in detail for the case of massless and massive fermions. For a 
non-vanishing fermion mass one finds confinement of “quarks” except for some special 
“B-worlds”. 

1. Introduction 

There has been much interest recently in Quantum Field Theories in two- 
dimensional space-time, since they provide a very instructive framework for study- 
ing non-perturbative aspects, One such aspect of particular interest has been the 
question of quark confinement. In two-dimensional gauge theories, confinement 
may appear to be an automatic consequence of Gauss’ law and the dimensionality 
of space-time. This is not necessarily so since Gauss’ law here only forbids the 
existence of sectors carrying quantum numbers coupling to the gauge field [l]. For 
QED* this implies the absence of states carrying electric charge. This could either 
mean that the quark charge has been screened or that quarks have been 
permanently bound into hadrons. In the bound-state picture, the mass of the 
“quark” is expected to play a fundamental role, since it will help to set the scale of 
hadronic interactions and, hence, of hadronic size. 

It is generally believed that “vortex formation” will be an essential ingredient of 
a confining theory [2]. Taking the existence of such vortices for granted, one could 
take up the problem at this point and ask in which way confinement will manifest 
itself. It appears thus reasonable to pursue this question in the context of models in 
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1 + 1 dimensions where the existence of such vortices is an automatic consequence 
of the dimensionality of space-time. 

Although the question of screening versus confinement will ultimately be a 
question of a more detailed dynamical understanding, a good indication for what 
actually is happening could already be obtained if the fundamental fermion field 
involves additional quantum numbers which cannot be screened. This would be 
triality in the case of U(l)o x SU(M)r (G = gauge group, F = flavour group) and 
electric charge in the case of U( l)F x SU(N)G. 

The particular case of SU(2) flavour has already been discussed in ref. [3]. Here 
we consider generalizations to the above symmetry groups. However, since we shall 
be interested in arriving at a non-perturbative picture of the spectrum of states, we 
restrict ourselves to the maximal Abelian (diagonal) subgroup (torus) SU(N), of 
SU(N), colour. In the case of massless fermions, exact solutions can then be con- 
structed following the methods of ref. [4]. The really interesting case is the one 
where the fermions do have a mass [5]. In that case we find a clear signal for 
confinement of triality, except for some special B-worlds where the confinement 
picture is replaced by that of a screened quark. These B-worlds together with 0 = 0 
are precisely the P, T invariant points in the set of all o-vacua. 

The existence of such screened exotic states for a discrete set of &worlds with 
massive fermions show that screening may play an important role also in situations 
where typical hadronic mass scales are involved. Such states would presumably only 
show up if, as will be done here, the vacuum polarization effects are taken into 
account. This is not the case,for the Wilson-loop criterion [6] which neglects these 
polarization effects. 

The present article is intended to give a reasonably self-contained discussion of 
various aspects of generalized gauge theories in 1+ 1 dimension with coloured and 
flavoured “quarks”. The paper is divided into three main sections in which we 
discuss separately the generalizations corresponding to a SU@& flavour, 
SU(&,o colour, and SU(iV), x SU(N) D,G gauge symmetry group, respectively. In 
each case we discuss the solutions and the implied vacuum structure, clustering and 
confinement properties separately for the case of massless and massive fermions. As 
we shall see, the mass of the fermion will play a fundamental role in confining 
states of non-zero triality. 

In order to facilitate reading of this paper we shall outline in some detail the 
main results. 

In sect. 2 we generalize the well-known results of QED2 to the case of U(l)Gx 
SU(M), flavour, where the U(1) gauge field only couples to the charge of the 
“quarks”. Charged sectors are absent as required by Gauss’ law [l]. The structure 
of the &vacuum is found to be the same as in QED*, but we have now an addi- 
tional (gauge invariant) operatorP..(x) (eq. (2.17a)) at our disposal which carries 
fundamental flavour and is thus a candidate for creating physical states carrying 
quark quantum numbers, For zero-mass fermions P*(x) does indeed create such 
quark-like states, indicating that the absence of charge sectors merely reflects 
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screening of the quark charge as induced by the electro-magnetic interaction. For 
massive fermions this is no longer found to be true, except for some isolated O- 
worlds: for 0 # *r/M only “non-exotic” states remain in the spectrum. Since 
flavour cannot be screened by the electromagnetic interaction we conclude that the 
quarks must have been permanently bound into non-exotic (hadronic) states. This 
turns out to be entirely in agreement with a semiclassical dynamical picture 
developed recently [17]. For 6 = f r/M also states carrying fundamental flavour 
make their appearance thus indicating that charge-screened quarks are liberated. 

In sect. 3 we then consider the generalization of QED2 to the maximal Abelian 
subgroup SU(N), of the SU(N)o gauge group, the torus of SU(N). Coloured 
sectors are again absent as required by the generalized Gauss’ law in 1+ 1 dimen- 
sions. This could mean screening or confinement. In the absence of a U(1) gauge 
field the “quark” charge cannot be screened. Hence we use the electromagnetic 
charge to distinguish between the above two possibilities. The charge now plays the 
role of flavour in the previous model, and correspondingly the soliton-like operator 
S(x) in eq. (3.17~) now takes up the role of the flavour operator%,,(x). Since S(x) 
is gauge invariant, it is a candidate for creating states carrying the elementary quark 
charge, and thus serves as a probe for confinement. For zero-mass fermions S(x) is 
indeed found to create states carrying one unit of charge, thus indicating that 
screening rather than confinement is responsible for the absence of colored states in 
this case. For massive fermions this is no longer true except for some isolated 
values of the now N- 1 independent O-angles characterizing the gauge vacuum: the 
spectrum only contains the usual non-exotic (hadronic) states except for 8” = 
5 r/N, where quarks are again liberated. 

In sect. 4 we then combine the above symmetry groups into SU(M)Fx 
SU(N)D,~. The flavour and “soliton” operators now make jointly their appearance. 
The screening (massless case) and confining (massive case) features of the previous 
two models persist except that the now different vacuum structure exhibits an addi- 
tional “selectivity” of the isolated O-worlds in which “quarks” are liberated. 

We conclude in sects. 5 and 6 with some remarks on the relevance of these 
results to QCD;? and a brief summary. 

Throughout this paper we follow the conventions of ref. [4]. 

2. QED2 with Aavour 

2.1. The massless model 

To begin with we consider the simple extension of QED2 to the case of M 
massless fermions transforming under the group SU(M) of flavour and the gauge 
group U(1). The corresponding equations of motion are 
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&Fw”(x) + eJ”(x) = 0 , 

where A is a flavour index, 

Fwy = &A, -&A,, 

(2.lb) 

is the field-strength tensor, and J’” is the electromagnetic current 

J”(x)=*~~NI~*(x)~~~*(x)l, (2.2) 

where the normal product is defined by the usual limiting procedure [7]. 
The solution to eq. (2.la) in the “Schwinger gauge” [7] will be of the form 

tiA(x) = :exp {ir”[~~Qx)+/3<(x)]}: $:0’(x), (2.3) 

with the identification 

A,(x)= -~c,,d’(ut(x)+/3~(x)) (2.4) 

for the gauge field, and +j a zero-mass (gauge) excitation. The free, massless 
canonical Dirac field 4?‘(x) can conveniently be written in the bosonized form [8] 

cl?(x)= ($-)I’* e-iffys’4: exp [&( r’&(x)+ i ao&(xo, z’) dzr]]: , (2.5) 

where the fields GA are the potentials associated with the M free, conserved cur- 
rents 

if(x) = :lp(x)y%+p(x): = -+“a& ) (2.6) 
IT 

and g is an arbitrary parameter introduced by the infrared regularization of the 
zero-mass fields cpA. 

The current (2.2) is calculated to be 

J”(x) = -~“/‘&&x)+L“(x), 
7r 

with 

where cp is the canonical free field defined by 

P=&V*> 

(2.7a) 

(2.7b) 

(2.8) 
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and we have used 

EG,,aYij = aIL7j, baYG = awcp, (2.9) 

Due to the presence of the longitudinal current L” the Maxwell equations (2.16) 
are only satisfied on the physical subspace defined by 

(W”(X)IW = 0 > I@), IW E %hys 3 (2.10) 

with i satisfying the equation of motion 

(a+?) 5(x)=0. (2.11) 

Condition (2.10) implies that L”(X), applied to the Fock vacuum, generates states 
of zero norm; hence, n must be a canonical,& field, quantized with indefinite 
metric-is fixes the constant p to be p = Jr/M. The constant (Y is chosen to be 
a = J?r/M in order for I+?~ (x) to approach the canonical free fermion field when the 
interaction is turned off. This also implies a canonical short-distance behaviour for 
the gauge invariant Green functions of the interacting field. 

The SU(M) currents are just the free fermion currents. The M- 1 diagonal ones 
are conveniently written in terms of M- 1 canonical, massless fields JiD, 

J:(X) = fv[~(x)y,;A’D~(x)] = -+e~V13~~‘~(X) ) (2.12a) 
P 

J:‘“(X) =N[~(X)y5yW&Pl+@)] = --LJ~(x) , 
JG 

where 

tr(A’,A’)=26”, 

and the “potentials” 4’” are related to those in eq. (2.6) by 

(2.12b) 

(2.13) 

J 
i &=j$+ ,yp. (2.14) 

The physical Hilbert space is generated by the application of polynomia!s of all the 
(gauge-invariant) operators commuting with L,(x), such as F,,, J,, L,, t+bA, where 6, 
is obtained from the field (2.3) by performing the operator gauge transformation 

(2.15a) 

(2.15b) 
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In this “physical” gauge, $,, is conveniently factorized in the following form: 

where 

(2.16) 

P,,(X)=:exp[i&y”(&(x)-&d(x))+& jdyl&(+A-&G)]:, 

*’ 
(2.17a) 

m __ 

dy’%(G+i) . II (2.17b) 

1’ 

u is an operator with scale dimension zero. 

2.2. Properties of the massless model 

The general properties of the model are similar to those of QED2 without 
flavour. Nevertheless, there are some special features which will be exhibited in the 
course of the following discussion. 

2.2.1. Vacuum structure and clustering. The operator Us ((u = Lorentz index) in 
eq. (2.17) commutes with all the observables of the theory. On the physical 
subspace defined by (2.10) it acts as a constant operator which merely carries the 
bare-charge and chiral selection rules 

[4,cJ= -flaa, [Q,,aJ= -rSaa,, (2.18) 

where 4 and d5 are the charges associated with the free U(1) current and the 
gauge-variant (in our case free) axial vector current, respectively. As in the case of 
the Schwinger model, we generate an infinite set of vacuum states [4] by repeated 
application of ga on the Fock vacuum. 

Jnl, nz) = a;+$* 10) . (2.19) 

As is well-known, this vacuum degeneracy implies a violation of clustering. 
However, unlike the case of U[l] QED*, this violation does not occur for the 
gauge-invariant fermion two-point function, since the operator Jh in (2.16) carries 
flavour and SU(M) chirality 

[QiD, &(X)] = -iA 2 &(x) ) 

[a&, %5(x)] = -4A 2 y5 &f(x) ) 
(2.20) 
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whereas the vacuum is flavour neutral and only carries U[l] chirality: 

[P, me1 = [Q;n, o;l= 0. 12.21 I 

Here @ and Q$’ are the charges associated with the SU(M) currents (2.12). It 
follows from (2.21) that violation of clustering can at best occur for operators which 
are SU(M)i_ x SU(M)n singlets: if such operators are expressable as a sum of non- 
singlet operators, there will be no violation of clustering; an example is provided by 
the chiral density J(x) = 1 J,(x) where Jh = &A i(l + rS)ILh carries 2 units of 
chirality: 

(OIJ+ b)J(x + t)lO),,--- [Z21”‘M’-’ . (2.22) 

On the other hand, the singlet operator constructed from products of Jn does 
violate the cluster decomposition: 

lim (01 fi J: (xA) i J,,(x,,+[)jO) 
El-fm A=1 A’=1 

Oforn #mM, 
= 

I(01 “n” J: (x*) I-&4, mM)12 # 0. (2.23) 
A=1 

The cluster decomposition is restored with respect to the physical vacuum obtained 
in the usual way by considering the coherent superposition 

(2.24) 

which also provides an irreducible representation for the observables 

Up I&, 0,) = eiBU/&, 0,) . (2.25) 

In the Euclidean functional integral approach to this model, these rules for 
obtaining the 0 = 0r - & chiral vacuum state directly involve the use of the generic 
(i.e., arbitrary external A) Atiyah-Singer zero-energy eigenstates [9]. A similar 
topological functional understanding for the origin of BC = .9r + & has not yet been 
achieved [9]. 

2.2.2. Gauge transformation and topology. The (pseudo) unitary operator [lo] 
iWf/m)Q[Al T[A]=e , (2.26) 

with 

??lA=O, (2.27) 
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induces the c-number gauge transformation 

T[A]rl,(x)T-‘[A] = e’*‘“‘&(r), 

T[A]A,(x)T-‘[A]=A,(x)+(l/e)a,A(x). 

For A(x”, x’) satisfying in addition to (2.27) the boundary conditions 

(2.28) 

Al/dO, -co) = 0, Al/~(O,o3) = 21r/M, (2.29) 

one has 

T[AI,MI = a:~, on ,&hys A . (2.30) 

As in ref. [lo], one can establish a similar relation for the operator V~ itself: 

7-[i*1,2A41= Ul,Z, on %hys A . (2.31) 

This shows that the vacuum states (2.19) carry a topological quantum number Y = 
(ni - nJ/2M = (1/2M) x chirality. 

The role of this topological number, as well as the violation of clustering dis- 
cussed previously can also be understood from the functional point of view, follow- 
ing the arguments of ref. [ll]. In particular one can use the cluster violation in 
order to obtain Feynman path representations for matrix elements of operators 
connecting different topological vacua, following the methods of ref. [ll]. Thus for 
the example of eq.(2.23), the limit will be controlled by the induced instanton [12] 

= A;“‘M1(z) +AZ”‘M1(z), 

where the superscript refers to the Chern number of the field configuration, and 

g(z) = A(z; 0) -A(z; Me*/a) , 

A(z, m) being the two-point function corresponding to a free scalar field of mass m. 
The limit in eq. (2.23) is controlled by the implicit 5 dependence of AfIM1(z) 

which, for n # multiple of M, is insufficient to compensate the power-like fall-off 
associated with the free-fermion Green functions [ll]* . The non-vanishing matrix 
element on the right-hand side of eq. (2.23) is given in terms of the induced 
instanton configuration AL”’ carrying winding number -m. 

2.3. The massive model 

From the preceding analysis we conclude that the indefinite metric formulation 
of massless QED;! with SU(M) flavour corresponds to the following Hamiltonian 

?? See also ref. [9]. 
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density: 
_I 

x”=$ ‘f :(a,~,)“+(Slrp~)*:+::(aoi;)*+(al@)*+~~S’: 
A=1 

-;:(aoTj)* + (ar$*: . 
(2.32) 

We now consider the effect of introducing a fermion mass. The Hamiltonian (2.32) 
is then replaced by 

X(x)=&(x)+m ; :&(X)&\(X):. (2.33) 
A=1 

We again make an ansatz of the form (2.3) and (2.5) [13]: 

4,il.x) = (f-)“’ ePv5’4: exp [ir’{aQx)+pG(x)}]: 

((2.34) 

However, the bosonic fields will no longer satisfy free-field equations. We shall 
nevertheless assume that these fields exhibit a free-field behaviour at short dis- 
tances. This corresponds to introducing a mass perturbation which does not destroy 
the asymptotically free behaviour of the theory. Then, the mass operator 4(x) 
defined in terms of the short-distance limit 

is given by 

A(X)=F*!I :cos{2(Ly~(x)+pjj(x)+s~*(x))}:, 

and has the scale dimension 

(2.35) 

CY*-p2 
dim[&]=~+- 

?T . 
(2.36) 

The Hamiltonian corresponding to the density (2.33) leads to the coupled equations 
of motion: 

(O+$4%(X)+2U~N~* :sin{2(cuQx)+prj(x)+S@,(x))}: =O, (2.37a) 

Chj(x)-2pmc1 F :sin{2((uQx)+pi(x)+&j,(x))}:=O, 
7T A=1 

(2.37b) 
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??~j,ix)+2S~:sin{2(~zQx)+&i(x)+S~,(x))}:=O, (2.37~) 

??(ii(x)+G(x))+2 (&-P) y,i* :sin{2(aQx)+prj(x)+S&(x))}:=O. 

(2.37d) 

Using the methods of ref. [14], one obtains, upon applying the Dirac operator 
on the smeared fermion field, 

+CC 

-yam I [.4zL 4* b)Im d.z’ , 
-m 

where A,, is given by 

(2.38) 

A,(x) = -+{&)+ i(x)}. (2.39) 

The second term on the right-hand side of eq. (2.38) corresponds to a Thirring-like 
coupling with 

jy”(x) = - +cV&(X) . (2.40) 

To prevent the appearance of this coupling we must require 

S=Jlr. (2.41) 

The other term in (2.38) represents the mass contribution; it will be given by 

(2.42) 

provided the scale dimension (2.36) of the mass operator has the canonical value. 
This is indeed the case and follows from the requirement that Maxwell’s equations 
be satisfied on the gauge-invariant (physical) subspace, as we now show. 

The gauge-invariant current obtained by the usual limiting procedure is given by 

J,(x) = -Ee,.a”E(n)+L,(x), 
T 

(2.43) 
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with 

(2.44) 

where we have used (2.41). 
For the choice p = Jr/M, L, becomes a purely longitudinal zero-mass field of 

zero norm, as can be seen from the equations of motion (2.37). On the gauge- 
invariant subspace defined by (2.10) we thus require 

(@lLF~“(x)+eJ”(x) I$) 

=~~(@~(,2_p2)eWUa” : :sin{2((y~(X)+P7j(X)+S~~(X))} :/*)=O, 
A=1 

so that Maxwell’s equations will be satisfied on XPhYS provided 

a=/3=8fJM (2.45) 

This implies 

dim [&,+I = 1, (2.46) 

so that for these values of the parameters I,$* will satisfy the massive Dirac equation 

(2.47) 

The gauge-invariant algebra of observables is generated by the set of operators 
{&(x), JCL(x), F,,(x), D(x, y)}; due to the equations of motion (2.37), FWy is 
formally the same to that of the massless theory: 

Fwv(x)=~ $e,,O(t(X)+?j(x))= -e Jr M lr - ~,&). 
IT 

D(x, y) is the bilocal operator formally given by 

.(x,Yi-*~lh(x)exp[ljAr(z)dz.] G:(Y). (2.49) 

In order to cast D(x, y) into a form exhibiting explicitly the spurionization of free 
charge for an arbitrary path of integration in the line integral, we write the fermion 
field r+k, in terms of the operator &: 

h(x)=:&(x)exp[i& j’c’iO<(xo,yl)]:. 

X1 

(2.50) 
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The exponential can be shown to be independent of the choice of integration-path 
up to a c-number phase [13]. Ignoring this phase one therefore has 

(2.51) 

The line integral over the i field in eq.(2.51) cancels the corresponding n contri- 
bution in the line integral over the gauge field, thus leading to 

D(x, y) =X(x - 

- 
M 

.y) 1 :exp i 
A=1 [J 1 

; &*w 

Y 

.I ??rv ~viA(.4 dz’ 

x 

- &((Y) 
II 

:w: 7 

where N(x - y) is the matrix defined in ref. [14], and &(x) is given by 

X*(x)=~(x)+J~~*(x)-I. (2.52) 

(+ is a spurion operator of the form of (2.17b) which commutes with all the 
observables. Therefore, on the physical subspace (2.10), it is a constant unitary 
operator which now only carries the charge selection rule, since the chiral symmetry 
is explicitly broken by the mass term. In an irreducible representation we can 
therefore replace cr:(~i by eis and CJ~CQ by ele. The ground state is of course 
degenerate with respect to the angle 0 which is associated with the spurionization 
of the free fermionic charge; it is non-degenerate with respect to 6, again reflecting 
the fact that the chiral symmetry is explicitly broken. 

In contradistinction to the massless case, the analogue of the transformation 
(2.12) 

h(x)=:exp[i& jdy’i(x’,y’)]h(x):, (2.53) 

&jx)=A,(~)-i dY ‘ib”, Y ‘1, 

no longer leaves the Dirac equation invariant. This already follows from the fact 
that 

-: cos 2 ( J$(y)+B) :p*i,, 9 (2.54a) 
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where xh has been defined in (2.52) and 

(2.54b) 

For A4 = 1 the commutator vanishes identically. However, for M > 1, eq. (2.54) 
shows that 4*(x) is in fact non-local with respect to the mass operator. Thus the 
transformation (2.54) can no longer be regarded as a gauge transformation in the 
usual sense, despite the fact that it does leave Maxwell’s equations invariant. 

The operator (2.53) still is of the form (2.16); it is invariant under c-number 
gauge transformations and therefore a candidate for creating physical states. In the 
massless case it does indeed create states of finite energy. However, in the massive 
case this is no longer true if M> 1 since according to the commutation relations 
(2.54) 4 then no longer leaves the mass operator invariant. We discuss the 
significance of this in subsect. 2.4. 

2.4. Screening and confinement 

Because of the non-zero mass of the field strength tensor F,,, Xphys only 
contains electrically neutral states [l]. In the case of massless fermions, the (gauge- 
invariant) operator (2.16) creates such a (finite-energy) state: 

IQ, GA (x)1 = 0 
,. 

(clh(x), however, carries the flavour of the fundamental fermion: 

[CP, l&x)] = -&&(x) . 

Thus for m = 0, Xphys contains zero-charge states belonging to the fundamental 
representation of SU(M) flavour. This means that the U(1) charge of the original 
U(M) fermion multiplet is merely screened by the vacuum polarization induced by 
the electromagnetic interaction and indicates screening without confinement. 

The picture is quite different if the fermions are massive. In this case the opera- 
tor r,+*(x) no longer creates a state of finite energy for M> 1, since it does not 
commute with the mass operator (see eq. (2.54)). This is a consequence of the line 
integral present in 9*((x), eq. (2.17a), which generates translations in cpA space which 
are not symmetries of the mass term (for x + co) 

(2.55) 

However, for the special value 0 = ~/IV, XPhYs still contains zero-charge states 
transforming according to the fundamental representation of SU(M); they are 
obtained by applying the operators K&I and &K on the t? = T/M vacuum where 

K=Kz fi K,,, 
A=1 
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where K@ is the “kink” operator [15] with the property 

K&(x)K,’ = 
@(x),x+--, 

-@(x),x++co, 
(2.56) 

The state $,,KIB = -?r/M) carries the quantum numbers of the “anti-particle” cor- 
responding to KJ: 10 = r/M); it can be thought of as a (M - 1) particle bound 
state. On the other hand, K& and $:K create states of finite energy for B = 
-?~/h4. Thus, except for some special B-worlds, the massive model exhibits 
confinement of the “exotic” states belonging to the fundamental representation of 
SU(M). The existence of such exotic states for SU(2) has already been noted pre- 
viously [3]. 

On the other hand, the usual non-exotic states are not confined: For generic 
B-worlds the operators $:$,c, fl: 1 $A, (xi) and nEI i,‘, (xi) create finite-energy 
states corresponding to “quark-antiquark”, M-quark and M-antiquark bound 
states. Hence, except for some special 6’-worlds, the massive model describes what 
one would expect from a more realistic theory: confinement of states carrying non- 
zero “triality”. 

The absence of exotic states is a result of the fact that the mass term (2.55) in 
the bosonized version of the theory now represents an additional “effective poten- 
tial” which, except for special values of 8, grows linearly with the separation of two 
“exotic” particles, thus binding them permanently into hadrons. As far as the 
quantum numbers are concerned, the spectrum of states is in agreement with a 
confining picture. For the special values of 0 = f r/M this bond is broken, allowing 
for the liberation of these exotic states. We are then left again with the “screened- 
quark” picture of the massless case. 

Note that the &values 6’ = f (a/Mm, n = 0, 1,. . . , are precisely those values for 
which the model becomes P and T invariant. The fastest way to see this is to 
perform a SU(M) diagonal chiral rotation which transforms away all the B’s in 
(2.55) except the one in the last term of the sum which has to be 

The mass term after this transformation is invariant under i + - 2, (Ph + -(Ph. 

3. Abelian gauge theory on the torus of W(N) 

3.1. The massless model 

As the next step in the program outlined in sect. 1 we consider the extension of 
massless QED* to an Abelian gauge theory with SU(A% as colour symmetry 
group, where SU@% denotes the diagonal subgroup, the torus of SU(N) 



where 

F’D =,z, A’“-_,fj A’” 
WE’ JLL’ I l.6, i3.2j 

and summation over the N - 1 values of il, is understood. The Lag,rarrgran i.3.1 I is 
invariant only under local gauge transformations generated by the diagonal sub- 
group SU(N)o of SU(N). The correspondmg (classical) equations of motion are 

Ci.3ar 

(3.3b) 

i3.3C) 

with the superscript u representing the colour index. 
The operator solution in the Schwinger gauge of the corresponding quantum 

equations is again a straightforward generalization of those discussed by Lowenstein 
and Swieca [4] for QED2: 

i3.4a) 

3.4b) 

where {c’“} are N - 1 free canonical pseudoscalar fields of mass g7/2rr, 

( 1 o+g Pqx)=O. !3.5j 

{7jlU} are N - 1 free massless fields quantized with indefinite metric, 

07+(x)=0 

and $,“(x), are free massless fermion fields. 
It is again convenient to write CL:(x) in the bosonized form 

(3.6) 

I,2 

exp [ -$irry~,]: exp [iJrr y5 -( ua 4” + 1 dy r&d”)]:, (3.7) 
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where cp’” are N free zero-mass fields related to the N- I potentials 6”’ of the 
free fermionic currents 

It will turn out convenient to introduce also the potential 6 of the isocalar 
current 

$“, 4’ and 6 are related by 

(3.10) 

(3.11) 

and satisfy the equal-time commutation relations 

[J(X), $$)]E.r= 0, 

[C&X,, a”&(y)]ET= iS”S(X’ - y’J > (3.12) 

[G(X), doVh!y)]r-.T=isahG(X’-Y1). 

The currents Jz (x) appearing in the generalized Maxwell equations (3.3b), as 
obtained by the usual gauge-invariant limiting procedure, are calculated to be 

J>(x)= - 
1 

J- - EWJV P”(X)+L~(A), 
2?r 

where the longitudinal part of the current is given by 

(3.13) 

Q(& I; -- 
J- $aM(~iQ-+~iyx)j, (3.14) 

with 

•~,,a~+ = aw,77’D, EllyaY&Ln = a,4+~, (3.15j 

Hence the equations of motion are satisfied only on the physical subspace defined 
by 

(@(L~(x)jW = 0, IW, IS) E ~PhYb (3.16) 
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Performing, as in the case of QED2, the operator gauge transformation 

one arrives at the operator solution in the “physical” gauge which is conveniently 
written in the form 

tj”ix,=($2 exp [-~i7ry5]: exp [&I Ai: ~5i;i”(x)]:8(x)~u(~), (3.17a) 

4% 
AZ”(x) = --E&” C(X), (3.17b) 

g 

where 

(3.17c) 

y5(~‘D(~)+rj1D(~))+ 7 dy’a, (@‘++‘)]}: 

X’ 
(3.17d) 

One novel feature of this Abelian generalization of QED* is the appearance of the 
“soliton-like” operator S(x) which, as we shall see carries the charge selection rule 
associated with the fundamental fermion. a”(x) is a constant operator on %,,hys 
and generates again the different vacuum sectors of the theory. 

3.2. Properties of the massless model 

We now briefly discuss some of the interesting features of the solution. 

3.2.1. Vacuum structure and clustering. The physical Hilbert space contains all 
finite-energy states which satisfy condition (3.16) and are invariant under local 
gauge transformations belonging to SU(&. It is obtained by applying polynomials 
of 

F *WY J>, LZ , &m, s and a:, 

as well as dipole-like operators on the Fock-vacuum. a: are constant operators on 
2 phys and carry the colour part of the fermionic solution rule. By applying (T: on 
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the Fock-vacuum, we generate an infinite set of (degenerate) ground states: 

l(nY), (&)= n (&)“‘(&“%). 
a.6 

(3;18) 

Negative values of nz correspond to the application of a:+ on IO). 
It follows from the commutation relations 

[@Y, CC (x)] = -& :A & C7: , (3.19) 

with 

&‘=~dx1&y5y0;hiD&,, (3.20) 

that the ground states (3.18) are eigenstates of the charge operators & associated 
with the gauge-variant (free) axial currents j$ The coherent superposition of these 
states, 

(3.21) 

provides, as in the analogue case of QED2 [4], a diagonal basis for UZ and for the 
observables. We shall denote this vacuum globally by 18). 

Whereas in the case of SU(M) flavour, the U(1) chirality and bare charge of the 
fermion was “dumped” into the vacuum, this occurs now for SU(& chirality (eq. 
(3.19)) and colour: 

[QiD, g:]= -&&r: * (3.22) 

On the other hand, the U(1) chiral and electric charge of the fundamental fermion 
is now carried by the colour-singlet “soliton’‘-operator 

[Q, S(x)1 = -S(x) , 

ia,, &(x)1 = - d&(x) . 
(3.23) 

It is now the selection-rules carried by S(X) which lead to a vanishing vacuum 
expectation value of & (0]4:]0) = 0 and prevents the gauge-invariant fermion two- 
point function from violating the cluster decomposition: 

0 e 
e+i(e~-e,b)[~~(xO_xl)]-l/N 

+i(e~-O~)[jcl(xO+X1)]-l/N 

0 
(3.24) 

Violation of clustering can now only occur for operators carrying zero U(1) chirality 
and charge. 

The state &“(x)]O) carries one unit of electric charge. As we shall show, this 
charge gets dumped into the vacuum if an electromagnetic interaction is intro- 
duced: the soliton operator which prevented a total breakdown of the cluster pro- 
perty in (3.24) is thereby turned into a “spurion”. 



3.2.2. Gauge tran.$ormation, The operator 

induces the c-number gauge transformation 

T[‘I]A~(n)T-~1[.21=A~(xl+! a,,zzD(xi, (3.26) 
R 

where 4” and A> are the fermion field and vector potential in the Schwinger- 
gauge . We observe that 6:: and Ai) in eqs. (3.17) are left invariant by this c- 
number transformation and thus represent observables of the theory. As in the case 
of the Schwinger-model, the operators a: can be identified on XPhys with T[A] for 
particular choices of 11 [lo]. 

3.3.3. SU(N) chiral transformations. The gauge-invariant axial-current JT is 
given by (see eqs. (3.46), (3.13)) 

J; r~~UJV= _L-~@‘.J”@L~~l;A”, 
J2n 2JlT 

where the vector symbol stands for the indices (iD). Because of the anomaly 

(3.27) 

the associated axial charge is not conserved and, hence does not generate chiral 
transformations. Such transformations are generated instead by the axial charge d5, 
eq. (3.20): 

$:(x1 * exp [-&LA,, t91$Z(x). (3.28) 

The ground state transforms correspondingly as 

l(G), (&I) + Kef +L . 61, cs; 4Abb .iY)). (3.291 

3.3. Extension to W(N), x U(l) 

In the following we shall identify the “soliton” quantum number with the charge 
of the fermion by adding an electromagnetic interaction to (3.1): 

~I=~-$F”“‘F,,+elLV”*A,. 



L. V. Reltledere et al. 1 Ahelian gauge theories and confinement 131 

We now obtain for the solution in the “physical gauge” 

$(xy = (5) 1’2: 

X exp [-i$*y5] : exp [i&ry’A L%ZiD]: :exp 
V 1 i ;y5t : (T(x)/(x): , 

with Ak and (r: still given by eqs. (3.17b, c) and 

u(~)=exp i 
[J ;[v5($+ri)+ i dy’%($+$]] . 

(3.30) 

(3.31) 

The choice of constants ensures again a canonical short-distance behaviour. The 
corresponding electromagnetic current is now 

JeL= - 

ConditionalO) now has to be supplemented by a corresponding condition for 
Lw = - JN/r d” (C#J + 7). Taking account of this additional constraint one sees that 
the “soliton” operator S(X) of the original solution (3.17) has spurionized, i.e., has 
dumped its quantum number into the vacuum, which now carries in addition a 
charge and U(1) chiral solution rule. RPhys now no longer contains states of non- 
zero charge, a property that can again be traced to the Coulomb interaction in the 
Hamiltonian. The quantum number carried by the soliton operator has thus been 
screened by the electromagnetic interaction, which allows one to identify this 
quantum number with the basic fermionic charge. There will now be an additional 
angle B characterizing the @-vacuum, which we now globally denote by 16, 0). 
Unlike in the case of SU(N)n, $ now has a non-vanishing expectation value with 
respect to the new vacuum: 

(& el&M, 0) # 0. (3.32) 

G’(x) may thus be viewed as a disorder variable, with I,? and 10, 0) playing a role 
analogous to that of the Cooper pair and superconducting ground state in the BCS 
theory of superconductivity. The non-vanishing expectation value (3.32) now 
implies a violation of clustering. 
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3.4. Adding a fermion mass 

Using again methods analogous to those of sect. 2 one arrives at a formal solu- 
tion for the massive theory in the Schwinger gauge: 

f(x) = ($ exp[-&y’]:exp[iJ$y’ CAi:(5”D+rj’D) 
n 

A:” = -g E,,qt’~+ p) , (3.33) 

which is formally the same that given by eqs. (3.4) and (3.7), except that tlD, 6” 
and GiD are no longer free fields, but satisfy the coupled set of equations 

2 

i ) ??+k ZiD= -pm 
J 

T 
-CAksin(2J7T&a), 
7Ta 

??” = -7- 2Pm sin (2JG”), 
?r 

??(p+$“)=O, 

with iiD given by eq. (3.9a) and 

$=cp’“+J$A’,, (PD+jj’D). 
i0 

As in the case of flavour one finds that the mass operator 

“!I = N[fj$] = -CL c :cos (2&&“): 
7ra 

(3.34a) 

(3.34b) 

(3.34c) 

(3.35) 

(3.36) 

has a canonical scale dimension, and as a result G”(x) satisfies the equation of 
motion 

(it? + g$h iD.4ii, - m)9 = 0, 

where normal ordering is implied. 
The N - 1 mutually commuting “diagonal” currents are calculated to be 

J$ = _‘~,,au(~i”+ii”+ii”). 
J2rr 

Maxwell’s equations are again satisfied on ZP,,, defined by condition (3.16) where 
L> is a free field as seen from eq. (3.34~). 
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The operator a: defined by eq. (3.17d) still commutes with the Hamiltonian. 
However, in the massive case the Hamiltonian itself now involves uz (through the 
mass term) so that the original vacuum degeneracy has been removed by the mass 
perturbation which now induces tunnelling transitions between the original 
imperturbed n-vacua. 

The ground states are degenerate with respect to the N - 1 angles e’” associated 
with the spurionization of the free fermion colour, but depend explicitly on N - 1 
angles 8” as a result of the explicit breaking of SU(N) chiral invariance by the 
mass term. 

3.5. Screening and confinement 

Whereas in the case of QED;? with SU(M) flavour the gauge field coupled to the 
charge of the fermions, the gauge fields in the case of SU(N),, couple to the colour. 
Hence, the role of the fermionic charge in SU(M) flavour is now taken up by the 
colour. ZPhys only contains colour-singlet states, since operators carrying colour 
(analogue of Coulomb gauge operators) create states of infinite energy. The electric 
charge of the fermions, however, remains unscreened; these physical states thus 
belong to the (one-dimensional) irreducible representations of U(1) X SU(N). 

In the case of zero-mass fermions the operator 4” in (3.17a) provides an 
example of an operator creating a physical colour-singlet state carrying one unit of 
charge: 

[a’, i”Wl= 0, [a, $wl= -$P(x). 
This indicates screening of “quark-colour” rather than confinement. However, 
when introducing a fermion mass, i”(x) no longer creates a finite-energy 
state, since the “soliton” operator (3.17~) generates the translation i+ d + m 
which does not leave the mass term 

invariant; in more physical terms: even though no Coulomb forces are present, the 
pair of charged particles created by the operators $a and Gat see a linearly rising 
(Coulomb-like) potential between them. Since the electric charge cannot be 
screened by the interaction with the gluons, this means that these singly charged 
states have become confined. Nevertheless there again exist special values of 0 for 
which XPhys contains (colour screened quark) states carrying one unit of charge: 
remember that the 8” angles are not all independent (Ca 8” = 0), one finds that the 
operators KI$~+ and 4°K create charged finite-energy states if N - 1 of the N Bars 

have the value -a/N, where 
N-l 

K= II KxK+, 
i=l 

where Ka is the “kink” operator (2.56). 



Jn addition to these ‘exotic” states, which exist onlv for particular &worlds, 
x phvs contains the usual non-exotic states corresponding to “quark-antiquark”. .Y 
quark and N-antiquark bound states. They are obtained bv applvinp the operators 
$“(X)+Gh(.xj and n;“_, j”Z(~) on the ground state and carry a zero and N-tuple 
fermionic charge, respectively. 

The presence or absence of exotic states above can intuitively be understood m a way 
similar to the one discussed in subsect. 2.5. 

4. Extension to SU(M), x SII(N)D.G 

In the following we summarize the results one obtains by combining those of 
sects. 2 and 3. We shall immediately turn to the massive case, since the case of 
zero-mass fermions is just a particular case of the general one. 

4.1. The solutiorz 

Except for the addition of a mass term m&, the Lagrangian corresponding to a 
SU(~%&XSU(N)~,~ symmetry is again of the form (3.1) where G:(x), now carries 
an additional flavour degree of freedom A. The Schwinger gauge solution to the 
corresponding equations of motion is obtained as a straightforward generalization 
of the solutions constructed in the preceding sections: 

IL’;(x)= ($ exp [ - &y5]: exp 
[J 

i &y c A;% (P”(X)+jjlD(X)) 
i0 3 

(4.la) 

&+) = _.I 27T g M{e~.a”t’D(x)+a,ti’“o)) J- 
where the boson fields now satisfy the equations 

!4.lb) 

(4.2) 
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From (4.1) one finds for the gauge-invariant current 

J#.$(x,= - J- g ,,,cw~(x) +Lk(x) )  

where 

L?(x) = - J- $,,aV($“(x)+iiD(x), 
with 

Thus Maxwell’s equations will be satisfied on XP,,, defined by (3.16). Observe that 
on account of equations of motion (4.2), Lk is again a purely longitudinal free field 
creating states of zero norm. 

Introducing further the canonically quantized fields $A and 4 via the relations 

we may write the gauge-invariant operator $Z corresponding to (4.la) in the 
factorized form 

where 

7 A& {&,+(X)++(X))+ r dyl&,(@’ +$-)}I . 
ID 

*’ 

The vacuum again carries the quantum numbers of the “spurion” operator CT:, that 
is colour and SU(N)o chirality. The “soliton” operator carries the fundamental 
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fermionic charge and U(1) chirality; it turns into a spurion when an electromagnetic 
interaction is introduced: 

$I\“(X)=exp[-$ry5]: exp[ id&y5 1 hi; 5’%)]:4,(,~)n”rr. 
i0 

The &vacuum now carries also the quantum numbers of the soliton. 
The operator 9: (x) satisfies the commutation relations 

[Q’D, 9; (x)1 = 0, 
[@, 9-i(x)] = -:/Qp: ) 

where QiD, QiD are the “diagonal” generators of SU(N) colour and SU(M) 
flavour, respectively. Hence, the operator 9,” is complementary to a: in the sense 
that it carries flavour, but no colour. 

Hence, 9:((x) and S(X) still carry the same selection rules as in the pure flavour 
and pure colour models discussed previously. They now jointly control the cluster 
properties of the correlation functions. 

4.2. Screening and confinement 

In the absence of an electromagnetic interaction, RPhys only contains electrically 
charged, colour-singlet states. For a zero fermion mass the operator $f(x) creates 
such a colour-singlet state carrying one unit of charge: it belongs to the fundamen- 
tal representation of U(1) X SU(N) flavour. When the fermions are massive, this 
operator no longer creates a finite-energy state. Nevertheless, finite-energy colour- 
screened “quark” states can again be constructed for particular choices of &worlds. 
Such states are 

K4%+(~)lI~‘~) for bfa, 

(4.3) 

&MI@]) for Bb= +&,b#a, 

as well as their respective “antiparticle” counterparts, where it is to be kept in 
mind that 1” 8’ = 0 and 

N-l 

K= fl KgififfKGiK4. 
i=l c h 

The operators $n, although colour singlets, still carry a selection rule associated 
with the “colour index” a: this is the consequence of the existence of a conserved 
(topological) current, the free fermion current i:(x),, which, however, does not 
generate symmetry transformations of the Lagrangian. As eq. (4.3) shows, the 
special &worlds (4.3) are very selective: in a world characterized by 8” = 
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- (r/MN)(N- 1) and &’ = + r/MN, all b # a, only quark-like states with topolo- 
gical colour index “a” exist. 

The above selective character of the &vacua persists if an additional elec- 
tromagnetic interaction is introduced. The &vacuum is now characterized by an 
additional angle 8. This additional,degree of freedom allows again for special B- 
worlds containing exotic states. They correspond to 

K&%)+lI~‘L 0) 9 e=&, 
57 

e”=-=, b#a, 

&w+Klw~, e), e=-&, eb= +-&-, 

as well as their respective “antiparticle” counterparts, where again ENtic = 0 and 

N-l 

K=K% fl Kp ir” i; KG.;. 
c=l A=1 c=l 

(4.4) 

b#a, 

In addition to the above exotic states there exist, of course, the usual non-exotic 
“bound” states for arbitrary values of 0. 

Similarly to the consideration at the end of subsect. 2.4, the “exotic” values for 
0 can be shown to be precisely those at which the model becomes P and T 
invariant. 

5. Connection with QCDt 

In QCD with SU(N) as gauge group there always exists a gauge in which 
FLY(x) points in the direction of the torus of SU(N). This, however, is not true for 
the vector potential Al(x), unless the local gauge symmetry is to be broken down 
to the torus of SU(N). Since a local gauge symmetry cannot be broken (by 
definition!), our torus solution cannot be regarded as a solution of spontaneously 
broken QCDz* . Nevertheless, we expect some features of our solution to be 
characteristic of QCD2 as well. This concerns in particular the intrinsic Higgs 
mechanism exhibited by the Abelian model which prevents the existence of states 
carrying colour. As we now show, a similar phenomenon is expected to occur in 
QCD,; it is intimately connected with the axial current anomaly. 

We define the axial vector current by the following covariant limiting procedure: 

J\,(x) = lim ./ii, (x; 6) , 
r+O 

??After finishing this work we received a preprint of P. Mitra and P. Roy (DESY 78/38) in 
which the operator solutions for massless QED2 on the torus of SU(N)o are given. We 
disagree with their interpretation as a broken QCDl solution. 



which can be wlltten III the covariant f<!rrn 

where 9: is the covariant derivative 

~::, =d‘ijd~ tf’,~,A~. 

For E + I) the only contribution comes from the (canonical short-distances 
singularity of the operator product of fermion fields so that 

It is convenient to write F:.” in the form 

'i 
F;y(x)== --jL$,,z (xl. (5.41 

which in 1 t 1 dimensions can always be done. From Maxwell’s equations (assumed 
to be satisfied on a suitable subspace SVPhys of X 

97$FLY(X)= --g&,(J), 

one then has 

2’ are evidently non-canonical (Lie fields) which play the role of the current 
potentials of (3.13) in the non-Abelian theory. Using (5.4) in (5.3) and taking the 
limit t + 0 one arrives at the equation 
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which is the covariant generalization of the tGrUS equation (3.5) to SU(N). Hence 
the intrinsic Higgs mechanism already encountered in the Abelian generalization of 
QED2 is also expected to be characteristic of QCD,. As in the case of SU(N)t, one 
again expects the mass term in eq. (5.6) to prevent the existence of colour sectors 
in Xphys. 

6. Conclusion 

We have considered here some generalizations of QED2 which are of particular 
interest and can be treated by methods analogous to those famihar from QEI&. In 
all cases “charge” sectors corresponding to quantum numbers to which the gauge 
fields couple are absent; this is a consequence of Gauss’ law in two-dimensional 
space-time. It is u priori not clear whether this means screening of these quantum 
numbers or confinement of the particles carrying them. Thus, in (massless and 
massive) QED2 the question of whether the operator i(x) creates a (zero-charge) 
state corresponding to a screened quark or a quark-antiquark bound state cannot 
be decided without developing a more detailed dynamical picture. Such a picture 
has been developed in ref. [17]. However, as has been brought out in the discussion 
of the previous sectroils, some cldrihcation of the question of screening L;ersus 
confinement can also be obtained independent of a more detailed dynamical 
investigation if additional quantum numbers are involved which do not couple to 
the gauge field and, hence, cannot be screened. The observed absence of states with 
these additional quantum numbers (fundamental flavour for SU(M) Aavour and 
charge for SU(N), colour) in the case of massive fermions (except for some special 
d-worlds) indicates conlinement rather than screening, in agreernent with the semi- 
classical considerations of ref. 1171. 

We believe that oui distinction between screening and confinement is also rele- 
vant for the recently discussed CP” -’ (7 models with fermions [16]. The kink 
phenomenon leading to the appearance of exotic states for particular non-vamshing 
values of B for massive fermions may aiso occur in those models. 

One of us (K.D.K.) would like to thank the Physics Department of PUC/RJ for 
the kind hospitality extended to him. 

References 

[I] J.A. Swieca, Fortschr. Phys. 25 (1977) 303. 
[2] F. Englert, 1977 Car&e Lecture Notes, University of Brussels preprint. 
[3] S. Coleman, Ann. of Phys. 101 11976) 239; 

V. Kurak, 23. Schroer and J.A. Swieca, Nucl. Phys. B134 (1978) 61. 
[4] J.H. Lowenstein and J.A. Swieca, Ann. of Phys. 68 (1971) 172. 



140 L. V. Belvedere et al. / Abelian gauyr theonus urld cotlfinemert: 

[5] S. Coleman, R. Jackiw and L. Susskind, Ann. of Phys. 93 (1975) 267: 
J. Kogut and L. Susskind, Phys. Rev. Dll I 1976) 3594. 

[6] K. Wilson, Phys. Rev. DlO (1974) 2445. 
[7] J. Schwinger, Phys. Rev. 128 (1962) 2425; Theoretical physics (IAEA Vienna, 1963~ 88. 
[S] S. Mandelstam, Phys. Rev. Dll (1975) 3026: 

G.F. Dell’ Antonio, Y. Frishman and D. Zwanzinger, Phys. Rev. D6 (1972) 988. 
[9] B. Schroer, Schladming Lecture Notes 1978, Acta Phys. Austr. Suppl. XIX (1978) 155. 

[lo] K.D. Rothe and J.A. Swieca, Phys. Rev. DlS (1977) 541. 
[ll] K.D. Rothe and J.A. Swieca, Path-integral representation for tunnelling amplitudes in 

the Schwinger model, Ann. of. Phys., to be published. 
[12] N.K. Nielsen and B. Schroer, Nucl. Phys. B120 (1977) 62; Phys. Lett. 66B (1977) 475. 
[13] N.K. Nielsen and B. Schroer, Phys. Lett. B66 (1977) 475, last section; 

L.V. Belvedere, Master Thesis 1978, PUC, RJ. 
[14] K.D. Rothe and J.A. Swieca, Phys. Rev. D15 (1977) 1675. 
[15] B. Schroer and J.A. Swieca, Nucl. Phys. B121 (1977) 505. 
[16] A. D’Adda, P.Di Vecchia and M. Liischer, Nucl. Phys. B146 (1978) 63; 

E. Witten, Nucl. Phys. B149 (1979) 285. 
[17] H.J. Rothe, K.D. Rothe and J.A. Swieca, Screening versus confinement, PUC preprint 

(Nov, 1978), Phys. Rev., D. to be published. 


